EL COMPRESOR: Succiona el refrigerante en estado gaseoso
recalentado a baja presión y temperatura procedente del evaporador y le eleva
la presión a un valor tal, que su temperatura de compresión correspondiente se
eleve por encima de la temperatura ambiente o del medio condensante para que de
esta forma el refrigerante pueda ceder su calor latente de condensación y así
pueda pasar del estado gaseoso al líquido.
CONDENSADOR: El refrigerante en estado gaseoso recalentado a alta
presión y temperatura procedente de la descarga del compresor entra al
CONDENSADOR y en los primeros tubos entrega calor sensible que corresponde a
los grados de recalentamiento del refrigerante hasta que éste obtiene su
condición de gas saturado a alta presión y temperatura, ya en este estado,
continua cediendo al condensador calor latente de condensación para cambiar a
la fase líquida. En los últimos tubos sigue cediendo calor sensible para
que el refrigerante líquido se sub-enfríe unos pocos grados por debajo de su
temperatura de saturación. Es importante tener en cuenta, que al control de
flujo (VET, tubo capilar, etc.) el refrigerante debe llegar 100%
líquido y con algunos grados de sub-enfriamiento para aumentar el efecto
refrigerante en el evaporador. Cualquier cantidad de refrigerante que pase al
evaporador en estado gaseoso implica pérdidas en efecto refrigerantes y
eficiencia.
CONTROL DE FLUJO DE REFRIGERANTE: Para interpretar mejor este
componente del sistema debemos tener en cuenta un principio fundamental. LA TEMPERATURA
DE VAPORIZACION DE UN LIQUIDO DEPENDE DE LA PRESION A LA CUAL ESTE SOMETIDO EL
LIQUIDO. ESTA TEMPERATURA ES DIRECTAMENTE PROPORCIONAL A SU PRESION.
El
refrigerante llega al control de flujo en estado líquido a alta presión (150
PSIG en un refrigerador trabajando con R-134a) tan pronto pasa a la salida del
control el refrigerante encuentra una súbita caída de presión (6.5 PSIG)
generada por el compresor. Esta caída de presión de aproximadamente 140 PSIG
hace que el refrigerante embulla o se vaporice a una temperatura de 0º F (-17.8º
C).
EVAPORADOR: Cuando el refrigerante encuentra esta presión
muy baja en el evaporador, empieza a cambiar rápidamente de fase líquida a
gaseosa a una temperatura cercana a los 0ºF. De esta forma se obtiene un
diferencial de temperatura óptimo para que los productos o espacios cedan
parte de su calor al refrigerante a través del evaporador. Para que el
refrigerante pase del estado líquido al gaseoso necesite calor, este calor lo
obtiene el refrigerante de los productos que hemos depositado en espacios
como el refrigerador, el congelador el cuarto frío, la oficina que tiene aire
acondicionado, etc. En los últimos tubos del evaporador
el refrigerante se recalienta unos grados con el fin de que este llegue nuevamente
en estado gaseoso recalentado al compresor, para iniciar un nuevo ciclo.
COMPRESSOR: sucks the superheated gaseous refrigerant at low pressure and
temperature from the evaporator and the pressure rises to a value such that the
corresponding compression temperature rises above the ambient temperature or
the condensing means for this so
the refrigerant can yield its latent heat of condensation and thus can pass
from gas to liquid.
CONDENSER: The superheated gaseous refrigerant in high pressure and temperature from the compressor discharge enters the condenser and the first delivery pipe sensible heat corresponding to the degree of refrigerant superheat until it gets its condition of saturated gas at high pressure and temperature, and in this state, continuous yielding the latent heat of condensation capacitor to change to the liquid phase. In recent tubes is losing sensible heat so that the liquid refrigerant is sub-cooled a few degrees below the saturation temperature. It is important to note that the flow control (VET, capillary tube, etc.) the cooling liquid should reach 100% and with some degree of sub-cooling to increase the cooling effect in the evaporator. Any amount of refrigerant through the evaporator in gaseous state implies losses and efficiency refrigerants effect.
Refrigerant flow CONTROL: To better interpret this component of the system must take into account a fundamental principle. The vaporization temperature of a liquid depends on the pressure to which this UNDER THE LIQUID. This temperature is directly proportional to its pressure.
The refrigerant flow control reaches the liquid at high pressure (150 psig in a refrigerator working with R-134a) as soon passes control output refrigerant is a sudden drop in pressure (6.5 psig) generated by the compressor. This pressure drop of about 140 PSIG embulla makes the refrigerant or vaporized at a temperature of 0 ° F (-17.8º C).
Evaporator: When the coolant is this very low pressure in the evaporator begins to change quickly from gas to liquid phase at a temperature close to 0 ° F. Thus optimum temperature differential is obtained for products or spaces give up part of its heat to the refrigerant through the evaporator. To pass the refrigerant liquid to gas heat needed, this heat is obtained by the cooling of the products we have deposited in places like the refrigerator, freezer cold room, the office has air conditioning, etc. In recent refrigerant evaporator tubes reheated a few degrees in order that it arrives again in the compressor superheated gaseous state, to start a new cycle.
CONDENSER: The superheated gaseous refrigerant in high pressure and temperature from the compressor discharge enters the condenser and the first delivery pipe sensible heat corresponding to the degree of refrigerant superheat until it gets its condition of saturated gas at high pressure and temperature, and in this state, continuous yielding the latent heat of condensation capacitor to change to the liquid phase. In recent tubes is losing sensible heat so that the liquid refrigerant is sub-cooled a few degrees below the saturation temperature. It is important to note that the flow control (VET, capillary tube, etc.) the cooling liquid should reach 100% and with some degree of sub-cooling to increase the cooling effect in the evaporator. Any amount of refrigerant through the evaporator in gaseous state implies losses and efficiency refrigerants effect.
Refrigerant flow CONTROL: To better interpret this component of the system must take into account a fundamental principle. The vaporization temperature of a liquid depends on the pressure to which this UNDER THE LIQUID. This temperature is directly proportional to its pressure.
The refrigerant flow control reaches the liquid at high pressure (150 psig in a refrigerator working with R-134a) as soon passes control output refrigerant is a sudden drop in pressure (6.5 psig) generated by the compressor. This pressure drop of about 140 PSIG embulla makes the refrigerant or vaporized at a temperature of 0 ° F (-17.8º C).
Evaporator: When the coolant is this very low pressure in the evaporator begins to change quickly from gas to liquid phase at a temperature close to 0 ° F. Thus optimum temperature differential is obtained for products or spaces give up part of its heat to the refrigerant through the evaporator. To pass the refrigerant liquid to gas heat needed, this heat is obtained by the cooling of the products we have deposited in places like the refrigerator, freezer cold room, the office has air conditioning, etc. In recent refrigerant evaporator tubes reheated a few degrees in order that it arrives again in the compressor superheated gaseous state, to start a new cycle.
muy buen aporte capo, estuvo muy bien
ResponderEliminar